

1

2	Canadian Subarctic and Arctic marine waters during summer, 2015
3	Tereza Jarníková ⁽¹⁾ , John Dacey ⁽²⁾ , Martine Lizotte ⁽³⁾ , Maurice Levasseur ⁽³⁾
4	and Philippe Tortell ^(1,4,5)
5	(1) Department of Earth, Ocean and Atmospheric Sciences, University of British
6	Columbia, 2022 Main Mall, Vancouver BC, Canada V6T 1Z3
7	(2) Woods Hole Oceanographic Institution, Woods Hole, MA 02543.
9	(3) Université Laval, Department of Biology (Québec-Océan), Québec City, Québec,
10	Canada.
11	(4) Department of Botany, University of British Columbia, 6270 University Blvd.,
12	Vancouver BC, Canada V6T 1Z4
13	(5) Peter Wall Institute for Advanced Studies, University of British Columbia, 6330
14	Crescent Blvd., Vancouver BC, Canada V6T 1Z4
15	Correspondence to: Tereza Jarníková (tjarniko@eoas.ubc.ca)

The distribution of methylated sulfur compounds, DMS and DMSP, in

16	Abstract
17	We present seawater concentrations of dimethylsulfide (DMS), and
18	dimethylsulfoniopropionate (DMSP) measured across a transect from the Labrador
19	Sea to the Canadian Arctic Archipelago, during summer 2015. Using an automated
20	ship-board gas chromatography system, and a membrane-inlet mass spectrometer,
21	we measured a range of DMS (~1 nM to 18nM) and DMSP concentrations (~1 nM to
22	150 nM) that was consistent with previous observations in the Arctic Ocean. The
23	highest DMS and DMSP concentrations occurred in a localized region of Baffin Bay,
24	where surface waters were characterized by high chlorophyll <i>a</i> (chl <i>a</i>) fluorescence,
25	indicative of elevated phytoplankton biomass. Across the full sampling transect,
26	there were only weak relationships between DMS/P, chl a fluorescence and other
27	measured variables, including positive relationships between DMSP:chl a ratios and
28	several taxonomic marker pigments, and elevated DMS/P concentrations in partially
29	ice-covered areas. Our high spatial resolution measurements allowed us to examine
30	DMS variability over small scales (<1 km), and document strong DMS
31	concentration gradients across surface hydrographic frontal features. The new
32	observations presented in this study constitute a significant contribution to the
33	existing Arctic DMS/P dataset, and provide a baseline for future measurements in
34	the region.

35 **1. Introduction**

36	The trace gas dimethylsulfide (DMS), a degradation product of the algal
37	metabolite dimethylsulfoniopropionate (DMSP), is the largest natural source of sulfur to
38	the atmosphere, accounting for over 90% of global biogenic sulfur emissions (Simó,
39	2001). In the atmosphere, DMS is rapidly oxidized to sulfate aerosols that act as cloud
40	condensation nuclei (CCN), backscattering incoming radiation, increasing the albedo of
41	low-altitude clouds and potentially cooling the Earth (Charlson et al., 1987). The seminal
42	CLAW hypothesis proposed by Charlson et al. (1987) suggests that this negative radiative
43	forcing will have cascading effects on marine primary productivity, leading to a DMS-
44	mediated climate feedback loop. Since its publication in 1987, the CLAW hypothesis has
45	provided motivation for the widespread measurement of DMS in the global ocean.
46	Beyond their potential role in regional climate forcing, DMS and DMSP also play
47	critical ecological roles in marine microbial metabolism and food-web dynamics (for a
48	complete overview; see Stefels et al., 2007). DMSP is believed to serve numerous
49	physiological functions in phytoplankton, with suggested roles as an osmolyte, an anti-
50	oxidant, and a cryoprotectant under different environmental conditions. Sunda et al.
51	(2002) suggested that oxidative stressors, such as high solar radiation or iron limitation,
52	may stimulate DMSP production in certain phytoplankton species. The production of this
53	molecule is largely species-dependent, and can vary by three orders of magnitude among
54	phytoplankton groups, with the highest intracellular concentrations typically reported in
55	dinoflagellates and haptophytes, and lower concentrations in diatoms (Keller, 1989).
56	After synthesis, DMSP can be cleaved to DMS and acrylate within algal cells, or

57	by heterotrophic bacteria acting on the dissolved $\text{DMSP}(\text{DMSP}_d)$ pool in the water
58	column (Zubkov et al., 2001). The release of DMSP into the water column is believed to
59	be enhanced in physiologically stressed or senescent phytoplankton (Malin et al., 1998).
60	and can be stimulated by zooplankton grazing and viral lysis (Zubkov et al., 2001).
61	Bacteria can also utilize DMSP _d as a sulfur source for protein synthesis (Kiene et al.,
62	2000), but this pathway does not lead to DMS release. The DMS yield of bacterial
63	DMSP metabolism (i.e. the fraction of consumed DMSP that is converted to DMS) varies
64	significantly, and may be influenced by the relative supply and demand of reduced sulfur
65	and carbon for bacterial growth (Kiene and Linn, 2000).
66	Modeling studies have suggested that DMS emissions could exert an especially
67	significant influence on regional climate in polar regions, due to the low background
68	concentrations of atmospheric aerosols at high latitudes (Woodhouse et al., 2010). In
69	support of this, direct observations have demonstrated a link between particle formation
70	events in the Arctic atmosphere and sea surface DMS emissions (Chang et al., 2011),
71	(Mungall et al., 2016), motivating further quantification of marine DMS emissions in
72	Arctic regions. Yet, logistical constraints have limited the measurements of surface water
73	properties in many high latitude regions, and these areas remain relatively sparsely
74	sampled for DMS/P concentrations. Indeed, of the approximately 50,000 data points in
75	the global Pacific Marine Environmental Laboratory (PMEL) database of oceanic DMS
76	measurements (http://saga.pmel.noaa.gov/dms/), only 5 % have been made in either
77	Arctic or Antarctic waters (~ 1600 and 1000 data points, respectively).
78	Despite the relatively limited sulfur observations in high latitude waters, an

79	examination of the available data reveals large differences in the water column DMS
80	distributions of the Arctic and Antarctic regions. While the summertime mean DMS
81	concentration in the Arctic Ocean is 3.0 nM (close to the global mean value of 4.2 nM,
82	derived from the PMEL data), the mean summertime DMS concentration in the Southern
83	Ocean is \sim 3 times higher at 9.3 nM. Moreover, several areas of extraordinarily high
84	DMS concentrations (>100 nM) have been observed in various regions of the Southern
85	Ocean (DiTullio et al. 2000; Tortell et al. 2011), whereas no study to date has observed
86	DMS concentrations above 25 nM in Arctic waters. The available data thus suggest
87	contrasting dynamics of DMS/P production in the two polar regions (i.e. Arctic vs.
88	Antarctic).
89	Although Arctic and Antarctic regions share several key physical characteristics,
90	most notably strong seasonal cycles in sea ice cover and solar irradiance, there are some
91	critical differences. Much of the pelagic Southern Ocean is an iron-limited, High
92	Nutrient Low Chlorophyll (HNLC) regime, with strong seasonal changes in mixed layer
93	depths (Boyd et al., 2001). Low iron conditions, and seasonally-variable mixed layer
94	light levels may induce oxidative stress (particularly in ice-influenced stratified waters)
95	and thus promote high DMS production (Sunda et al., 2002). In addition, parts of the
96	Southern Ocean are characterized by extremely high biomass of Phaeocystis antarctica
97	(Smith et al., 2000), a colonial haptophyte that is a prodigious producer of DMSP and
98	DMS (Stefels et al., 2007). By comparison, the salinity-stratified surface waters of the
99	Arctic Ocean are believed to be primarily limited by macronutrient (i.e. nitrate)
100	availability (Tremblay et al., 2006), with a maximum phytoplankton biomass that is at

101	least an order of magnitude lower than that observed in the Southern Ocean (Carr et al.,
102	2006). Despite the relatively low phytoplankton biomass over much of the Arctic Ocean,
103	reasonably high summertime DMS levels (max ~ 25 nM) have been observed in some
104	regions. It is also important to note that significant Arctic phytoplankton biomass and
105	primary productivity may occur in sub-surface layers (Martin et al. 2010), and in under-
106	ice blooms (Arrigo et al., 2012). The quantitative significance of these blooms for DMS
107	production is unknown at present (Galindo et al., 2014).
108	Quantifying the spatial and temporal distribution of DMS and DMSP in the Arctic
109	Ocean is particularly important in light of the rapidly changing hydrographic conditions
110	across this region. Rapid Arctic warming over the past several decades has been
111	associated with a significant reduction in the extent of summer sea ice, resulting in higher
112	mixed layer irradiance levels and a longer phytoplankton growing season (Arrigo et al.,
113	2008). Arrigo et al (2008) suggested that continued warming and sea-ice loss could lead
114	to a three-fold increase in primary productivity over the coming decades. The effects of
115	these potential changes on DMS/P concentrations and cycling remain unknown, but it has
116	been suggested that future changes in Arctic Ocean DMS emissions could modulate
117	regional climatic patterns (Levasseur, 2013). Indeed, modeling work has suggested that
118	cooling associated with increased DMS production and emissions in a less ice-covered
119	Arctic may help offset warming associated with loss of sea-ice albedo (Gabric et al.,
120	2004). The important climatic and biological roles of reduced sulfur compounds,
121	combined with altered marine conditions under a warming environment, provide the
122	motivation for a deeper understanding of the distribution and cycling of DMS and related

123	compounds in Arctic waters.
124	In this article, we present a new data set of DMS and DMSP concentrations in
125	Arctic and Subarctic waters adjacent to the Canadian continental shelf. We used a
126	number of recent and emerging methodological approaches to measure these compounds
127	in a continuous ship-board fashion. In particular, we used membrane inlet mass
128	spectrometry (MIMS) to measure DMS with extremely high spatial resolution (i.e. sub-
129	km scale), and the recently developed organic sulfur sequential chemical analysis robot
130	(OSSCAR), for automated analysis of DMS and DMSP. Our goal was to utilize the
131	sampling capacities of the MIMS and OSSCAR systems to make simultaneous
132	measurements of DMS/P in Subarctic Atlantic and Arctic waters, in order to expand the
133	spatial coverage of the existing DMS/P dataset, and identify environmental conditions
134	leading to spatial variability in the concentrations of these compounds.
135	2. Methods
136	2.1 Study Area
137	Our field study was carried out on board the CCGS Amundsen during Leg 2 of the 2015
138	GEOTRACES expedition to the Canadian Arctic, (July10 – August 20, 2015). We
139	sampled along a \sim 10,000 km transect from Quebec City, Quebec, to Kugluktuk,
140	Nunavut. Data collection commenced off the coast of Newfoundland, and included
141	waters of the Labrador Sea, Baffin Bay and the Canadian Arctic Archipelago (Fig. 1).
142	The cruise transect covered two main distinct geographic domains - the Baffin
143	Bay/Labrador Sea region, and the Canadian Arctic Archipelago (CAA). The majority of
144	the surface water in the Canadian Arctic Archipelago is from Pacific-sourced water

145	masses, as a shallow sill near Resolute limits the westward flow of Atlantic-sourced water
146	(Michel et al., 2006). Flow paths through the CAA are complex. The region is
147	characterized by a network of shallow, narrow straits that are subject to significant
148	regional variability in local mixing and tidal processes, and strongly influenced by
149	riverine input, which drives stratification (Carmack et al, 2011). By contrast, both
150	Atlantic- and Pacific-sourced waters mix in the Baffin Bay and Labrador Sea regions, and
151	this confluence drives a strong thermohaline front. These regions are less strongly
152	stratified than the CAA (Carmack et al, 2011).
153	2.2 Underway sampling systems
154	We utilized two complementary underway sampling systems to measure reduced
155	sulfur compounds; membrane inlet mass spectrometry (MIMS; Tortell, 2005)), and the
156	organic sulfur sequential chemical analysis robot (OSSCAR; Asher et al., 2015)).
157	Detailed methodological descriptions of these systems have been published elsewhere
158	((Tortell, 2005, 2011), (Asher et al., 2015)), and only a brief overview is given here.
159	2.2.1 OSSCAR
160	The OSSCAR instrument consists of an automated liquid handling / wet
161	chemistry module that is interfaced to a custom-built purge-and-trap gas chromatograph
162	(GC) equipped with a pulsed flame photometric detector (PFPD) for sulfur analysis. A
163	custom LabVIEW program is used to automate all aspects of the sample handling and
164	data acquisition. During analysis, unfiltered seawater (3 - 5 ml) from an underway supply
165	(nominal sampling depth \sim 5 m) is drawn via automated syringe pump into a sparging
166	chamber. DMS is then stripped out of solution (4 minutes of 50 ml min ⁻¹ N_2 flow) onto a

167	1/8" stainless steel trap packed with carbopack at room temperature. Rapid electrical
168	heating of the trap (to ~260°C), causes DMS desorption onto a capillary column (Restek
169	SS MXT, 15m, 80 °C, 2 ml min ⁻¹ N_2 flow) prior to detection by the PFPD (OI Analytical,
170	Model 5380). Light emitted during combustion in the PFPD is converted to a voltage and
171	recorded by a custom built Labview data acquisition interface. Following the completion
172	of DMS analysis, 5 N sodium hydroxide is added to the sparging chamber for 14 minutes
173	to cleave DMSP in solution to DMS, following the method of Dacey and Blough (Dacey
174	and Blough, 1987). The resulting DMS is sparged out of solution and measured as
175	described above. The sparging chamber is then thoroughly rinsed with Milli-Q water,
176	and the process can be repeated. As we used unfiltered seawater for our analysis, it is
177	important to note that we measured total DMSP (DMSP $_t$) concentrations, which represent
178	the sum of dissolved and particulate pools.
179	We measured an in-line standard every 4-5 samples (at most every 3 hours) to
180	ensure that the system was functioning correctly, and to correct for potential detector
181	drift. The mean standard error of daily point standards was 0.55 nM, and we consider
182	this to represent the precision of our emerging method (significant efforts are underway
183	to increase this precision). To correct the underway data for instrument drift, point
184	standard measurements were smoothed with a 3-pt running mean filter, interpolated to the
185	time-points of sample measurements, and compared to the known standard concentration
186	
	to provide a drift correction factor for every seawater data point. Six-point calibration
187	to provide a drift correction factor for every seawater data point. Six-point calibration curves were performed every two days, using DMS standards (ranging from 0 to 18nM),
187 188	

189	et al., 2015). The limit of detection of the system was calculated from the calibration
190	curve using the formula $C_{LOD} = 3s_{y/x} \div b$, where C_{LOD} is the concentration limit of
191	detection, $s_{y\!\!/\!x}$ is the standard error of the regression , and b is the slope of the regression
192	line. With this approach, we derived a mean limit of detection of 1.4 nM. The mean
193	linear calibration curve R ² value, taken over all calibration curves, was 0.9887.
194	The OSSCAR system is designed to automate the collection of seawater for
195	sequential analysis of DMS, DMSO, and DMSP in a single sample. During our cruise,
196	however, we experienced problems with the DMSO reductase enzyme used to convert to
197	DMS for analysis, and we therefore configured the instrument to run only DMS and
198	DMSP at sea, with one cycle requiring roughly 30 minutes.
199	2.2.2 MIMS
200	We used Membrane Inlet Mass Spectrometry (MIMS) to obtain very high frequency
201	measurements (~ several data points per minute) of DMS concentrations and other gases
202	in surface seawater. Using this system, seawater from the ship's underway loop was
203	pumped through a flow-through sampling cuvette, attached, via a silicone membrane, to a
204	quadrupole mass spectrometer (Hiden Analytical HPR-40). DMS was measured by
205	detecting ions with a mass to charge ratio of 62 (m/z 62) every \sim 30 seconds. To achieve
206	constant sample temperature prior to contact with the membrane, seawater was passed
207	through a 20 foot coil of stainless steel tubing immersed in water bath held at 4 °C
208	(Tortell et al. 2011). The system pressure (as measured by the Penning Gauge) remained
209	stable during operation (~1.3 – 1.5 x 10 ^(-6) Torr). The DMS signal was calibrated using
210	liquid standards that were produced by equilibrating 0.2 μm filtered seawater with a

- 211 constant supply of DMS (m/z 62) from a calibrated permeation device (VICI Metronics).
- The primary effluent from the permeation tube (held at 30 °C) was split among several
- 213 capillary outflows and mixed into a N_2 stream (~ 50 ml min⁻¹) to achieve a range of
- 214 DMS / N₂ mixing ratios for bubbling into standard bottles held in an incubator tank
- supplied with continuously flowing seawater. Concentrations of DMS in the standard
- 216 bottles were cross-validated by measuring discrete samples using the OSSCAR system.
- 217 2.3 Post-processing of DMS data
- 218 Raw data outputs (voltages) for both OSSCAR and MIMS measurements were processed
- 219 into final concentrations using MATLAB scripts. For OSSCAR data, raw voltages were
- 220 captured with a sampling frequency of 5 Hz. Sulfur peaks eluting off the GC column
- 221 were integrated using a custom MATLAB script, with correction for baseline signal
- 222 intensities. DMS concentrations were derived from peak areas using the calibration
- curves as described above.
- 224 2.4 Ancillary seawater data
- 225 Shipboard salinity, temperature, wind speed, and chlorophyll *a* (chl *a*)
- 226 fluorescence measurements were collected using several underway instruments. We used
- a Seabird Electronics thermosalinograph (SBE 45) for continuous surface temperature
- and salinity measurements, and a Wetlabs Fluorometer (WetStar) to measure chl *a*
- fluorescence, as a proxy for phytoplankton biomass. We note that the chl *a* fluorescence
- 230 data are subject to significant diel cycles associated with light-dependent fluorescence
- 231 quenching. All sensors were calibrated prior to and following the summer expedition.
- 232 Conductivity Temperature Depth (CTD) profiles were used to measure vertical profiles of

233	salinity and potential temperature at 17 stations, from which we computed density using
234	the Seawater Toolbox in MATLAB. The mixed layer depth was defined as the depth
235	where density exceeded surface values by 0.125 kg m ⁻³ . Sea ice concentrations were
236	obtained from the AMSR-E satellite product (Cavelieri et al. 2006) with a spatial
237	resolution of 12.5 km. The percent ice cover along the cruise track was derived from a
238	two dimensional interpolation of the ship's position in time and space against the daily
239	sea ice data.
240	All correlation analyses (Pearson's r) were computed in MATLAB, using the
241	corrcoef function. Sample sizes were as follows: 33,250 data points in the MIMS DMS
242	dataset, 344 in the OSSCAR DMS dataset, and 318 in the OSSCAR DMSP dataset.
243	2.5 Phytoplankton biomass and taxonomic composition
244	In addition to underway data, samples for the quantification of photosynthetic and
245	accessory pigments (Table 1) were collected at a number of discrete oceanographic
246	stations (see Table 2). For each station, duplicate samples (250-500 mL) for chl a analysis
247	were filtered onto pre-combusted 25 mm glass fiber filters (Whatman GF/F) using low
248	vacuum pressure (<100 mm Hg). Filters were stored at -20 °C and chl a was determined
249	within a few days of sample collection using fluorimetric analysis following the method
250	of Welschmeyer (Welschmeyer 1994). Duplicate 1-2 L samples were filtered onto pre-
251	combusted 25 mm GF/F for pigment analysis by reverse-phase High-Performance Liquid
252	Chromatography (HPLC). Filters were dried with absorbent paper, flash frozen in liquid
253	nitrogen and stored at -80 °C until analysis following the method of Pinckney et al
254	(1994). We used several diagnostic pigments as markers for individual phytoplankton

255	groups, as described by Coupel et al (2015) (see Table 1). Following HPLC pigment
256	processing, data were interpreted with the chemotaxonomy program CHEMTAX V1.95,
257	using the pigment ratio matrix described by Taylor et al (2013).
258	2.6 DMS Sea-Air Flux
259	We derived sea-air fluxes of DMS from MIMS measurements of DMS
260	concentrations, as these data had higher resolution and spatial coverage than OSSCAR
261	observations. We computed sea-air flux as:
262	$F_{\rm DMS} = k_{\rm DMS} ({\rm DMS}_{\rm SW}) (1 - {\rm A})^{0.4} \tag{1}$
263	Where DMS $_{\mbox{\tiny sw}}$ is the concentration of DMS in the surface ocean and $k_{\mbox{\tiny DMS}}$ is the gas
264	transfer velocity derived from the equations of Nightingale et al. (2000), normalized to
265	the temperature and salinity-dependent DMS Schmidt number of Saltzman et al. (1993).
266	The term A represents percent sea ice cover, and the scaling exponent of 0.4 accounts for
267	the effects of sea ice on gas exchange and is derived from the work of Loose et al. (2009).
268	Sea surface salinity and temperature measurements described in section 2.5 were used in
269	the calculations. Wind speed data were obtained from the ship's anemometer (AAVOS
270	data, Environment Canada).
271	3. Results
272	3.1 Oceanographic setting
273	Figures 1 and 2 show the distribution of hydrographic properties across our cruise
274	survey region. Over our sampling area, surface water temperatures varied between -1.2
275	and 10.2 °C, while surface salinity ranged from 10.7 to 34.7 psu (Fig. 1). The warmest
276	and most saline waters were found in the Labrador Sea, with cold fresher waters in

277	Hudson Strait and the Canadian Arctic Archipelago. Underway chl a fluorescence varied
278	between 0.04 and 2.96 μ g L ⁻¹ , averaging 0.20 μ g L ⁻¹ . The highest chl <i>a</i> fluorescence was
279	observed in a localized region within Baffin Bay, in the vicinity of a sharp temperature
280	and salinity frontal zone (Fig. 1). Mixed layer depths ranged from $\sim 5 - 50$ m, and were
281	deepest in the Labrador Sea and shallowest in the stations of the Canadian Arctic
282	Archipelago. Sea ice cover was variable across the survey transect, with ice-free waters
283	in the Labrador Sea, and significant ice cover in the northern Hudson Bay and parts of the
284	Canadian Arctic Archipelago (Fig. 2).
285	3.2 Phytoplankton biomass and taxonomic distributions
286	Using measurements of accessory photosynthetic pigments, we examined spatial patterns
287	in the taxonomic composition of phytoplankton assemblages (see Table 1 for a
288	description of HPLC marker pigments and their associated phytoplankton taxa). The
289	distribution of pigments across our sampling stations is presented in Table 2, along with
290	measurements of mixed layer depth and ice cover, while CHEMTAX-derived assemblage
291	estimates are shown in Table 4. In order to remove large potential differences in total
292	phytoplankton biomass, we normalized pigment concentrations to total chl a
293	concentrations measured using HPLC (see Methods, section 2.5).
294	CHEMTAX pigment analysis shows that all stations in the study area were diatom-
295	dominated, although haptophyte, dinoflagellate, and prasinophyte markers were detected
296	in varying quantities at all stations (see Table 4). Total HPLC-measured chl a was
297	relatively low throughout the study area, ranging from 0.11 to 0.56 μ gL^(-1).
298	3.3 Observed DMS/P concentration ranges

299	The DMS data shown in Fig. 1 are derived from MIMS measurements, since
300	these have wider geographic coverage and greater spatial resolution than OSSCAR data.
301	DMS concentrations measured with MIMS ranged from 0.2 nM to 12 nM, averaging 2.7
302	(± 1.5) nM. The highest values were observed in the northern Labrador Sea, Baffin Bay
303	and Hudson Strait, with lower values through much of the Arctic Archipelago.
304	Figure 3 shows the distribution of DMS, measured by both MIMS and OSSCAR,
305	along the cruise track. DMS concentrations measured with OSSCAR ranged from 0.1 to
306	18nM, averaging 3.2 ± 2.4 nM. In general, we observed reasonably good coherence
307	between DMS measurements made by our two analytical systems, with similar absolute
308	values of data and spatial patterns. There were, however, notable offsets in the early
309	August measurements (~ km 7000 cruise track, Fig. 3a), when OSSCAR DMS data were
310	consistently higher than MIMS data. Notwithstanding this offset (for which potential
311	reasons are addressed in the discussion), the good coherent spatial patterns in data
312	derived from these independent methods is encouraging, particularly given the rather low
313	precision of our current OSSCAR system.
314	The spatial distribution of DMSP concentrations (measured with OSSCAR) along
315	the cruise track is also shown in Fig. 3. Concentrations ranged from <1 nM to 160 nM,
316	and averaged 30 ± 29 nM. DMSP:chl <i>a</i> ratios measured from HPLC chl a data ranged
317	from 52.31nmol μ g^(-1) to 181.4nmol μ g^(-1). Examination of the data in Figure 3
318	reveals that high DMS concentrations were sometimes, but not always, accompanied by
319	high DMSP concentrations. For example, a sharp increase in measured DMSP
320	concentrations (around 7000-7400 km) on the cruise track was accompanied by a sharp

- 321 increase in DMS measured by both instruments, while low-DMS waters observed around
- 322 km 9400 along the transect also showed very little DMSP. Over the portion of the
- 323 transect where measurements of both DMS and DMSP were available, the OSSCAR-
- 324 measured concentrations of these compounds exhibited a statistically significant positive
- 325 correlation (r = 0.52, p < 0.001). There were, however, a number of regions where
- 326 increased DMS concentrations were not accompanied by increases in DMSP (e.g. ~ km
- 327 10,000).

328 3.4 Sea-Air Flux

- 329 Figure 5 shows DMS sea-air fluxes as computed from MIMS-measured DMS seawater
- 330 concentrations, wind speed and sea ice cover. DMS sea-air fluxes ranged from < 1 to 80
- μ mol S m⁻² day⁻¹, with peak sea-air flux observed around km 5500 on the cruise track.
- 332 Sea-air flux is highly dependent on wind speed and sea ice cover, with the result that even
- 333 high concentrations of seawater DMS yielded low sea-air flux when low wind and/or
- high sea ice was present (e.g. km 2100, 7200, 8300). Conversely, very high sea-air fluxes
- 335 were observed when moderately high DMS concentrations coincided with high wind
- 336 speeds and ice-free waters (e.g. km 5400).

337 **3.5** Comparison of gradients in DMS data with hydrographic features

- 338 The high sampling frequency of MIMS measurements allows the comparison of
- 339 DMS observations with other underway environmental variables, and enables the
- 340 quantification of small-scale DMS concentration gradients in near real-time. Figure 2
- 341 shows a cruise track record of MIMS-measured DMS concentrations in relation to
- 342 salinity, temperature, chl *a* fluorescence, and ice cover. Several sharp increases in DMS at

343	around kms 2100, 3300, and 3800 along the cruise track were accompanied by strong
344	gradients in temperature and, to a lesser extent, salinity (Fig. 2). These regions
345	correspond to areas in the Labrador Sea and Baffin Bay. An increase in DMS
346	concentrations in Baffin Bay around km 7200 in the cruise track (Fig 2a) was associated
347	with a simultaneous drop in sea-surface temperature and salinity, in close proximity to a
348	sharp increase in chl a fluorescence along the cruise track (Fig 2c) (see Fig. 1). As shown
349	in Fig 3b, this localized region exhibited the highest concentrations of DMSP along the
350	transect. Interestingly, this area was also characterized by strong gradients in sea ice
351	concentrations, and the low salinity waters are indicative of localized ice melt. Figures 1d
352	and 2d also show the large-scale salinity gradients in the Hudson Bay and the Canadian
353	Arctic Archipelago, highlighting the freshwater influx in these near-shore areas. In
354	contrast to our observations in Baffin Bay, DMS concentrations showed relatively little
355	variability across these salinity gradients.
356	In order to more closely examine small-scale variability in DMS and other surface
357	water variables, we calculated spatial gradients in the data to examine the coherence of
358	frontal features in DMS, salinity, temperature and chl a fluorescence. For this analysis,

frontal features in DMS, salinity, temperature and chl *a* fluorescence. For this analysis, we computed gradients in each oceanographic variable within a neighborhood of 100 points surrounding each point. Gradients (G) for each variable (DMS, SST, chl *a*, and salinity) were calculated at each point x as follows:

$$G_{x} = \frac{V_{x+50} - V_{x-50}}{D_{x+50} - D_{x-50}}$$
(2)

363 Here, G is gradient (in units of change per km), V is the value of the variable at a
364 point, x, and D is the cruise track distance at x. A neighborhood of 100 points was

365	subjectively chosen because it best captured the observed variability in the data,
366	representing an intermediate value between a localized neighborhood (e.g. 10 points),
367	which would only consider changes close to the point, and a large neighborhood (e.g.
368	1000 points), which would smooth the features. The results of this analysis (Fig. 4)
369	qualitatively demonstrate a coherence of DMS gradients with salinity, chlorophyll, and
370	sea surface temperature.
371	3.6 Correlation with ancillary oceanographic variables
372	We computed Pearson correlation coefficients of DMS and DMSP with underway
373	measurements of salinity, sea surface temperature, chl a fluorescence, and sea ice cover.
374	We also examined the potential relationships between DMS concentrations and MIMS-
375	derived pCO_{2} , and $\Delta O_{2}/Ar$ (Tortell et al., in preparation). The results can be seen in Table
376	3. Only correlations significant at the 0.05 level are included. Only weak correlations are
377	seen between MIMS-measured DMS data and ancillary variables, and OSSCAR DMS
378	data did not exhibit any significant correlations with any ancillary variables, including
379	measured of phytoplankton taxonomic distributions. A strong positive correlation ($r =$
380	0.66, $p \le 0.001$) was found between DMSP and underway chl <i>a</i> fluorescence. Over the
381	whole transect, we observed a weak negative correlation between DMS/P and sea-ice
382	cover ($r = -0.26$ for DMS, and $r = -0.34$ for DMSP, $p < 0.001$ in both cases). A weak
383	positive correlation was found between DMSP/chl <i>a</i> and ice cover ($r = 0.52$, $p < 0.04$),
384	suggesting potential roles for sea-ice microalgae in DMSP production at the sampled
385	stations. It is interesting to note that elevated chl a fluorescence and DMSP
386	concentrations often occurred in areas of intermediate ice cover (km 3300, 7300 and 9200

- 387 along the cruise track), potentially reflecting the influence of ice-edge blooms or under-
- 388 ice phytoplankton assemblages. Potential mechanisms for these features are addressed in
- the discussion.
- **4. Discussion**
- 391 Our results provide a new dataset of reduced sulfur compounds in an under-
- 392 sampled region of the Arctic Ocean, and enable an examination of DMS/P variability in
- relation to a number of oceanographic properties on a range of spatial scales. Below, we
- 394 focus our discussion on the observed relationship between gradients in DMS and other
- 395 oceanographic variables, and discuss the comparability of the two DMS measurement
- 396 methods utilized. We compare our results to previously published measurements in the
- 397 Arctic, situating our results in the context of the changing hydrography and
- 398 phytoplankton ecology of the Arctic Ocean.

399 4.1 Comparability of MIMS and OSSCAR measurements

- 400 The OSSCAR and MIMS instruments have previously shown good agreement in 401 measured DMS concentrations in the Subarctic Pacific Ocean (Asher et al. 2015).
- 402 Similarly, we observed relatively good coherence between the two methods (Fig. 3) over
- 403 much of our cruise track. The largest exception to this occurred around km 7000, when
- 404 DMS measurements measured by OSSCAR were significantly higher than those
- 405 measured by MIMS. This region was characterized by very high DMSP measurements
- 406 (often one order of magnitude higher than the DMS measurements). If small amounts of
- 407 DMS remained in the OSSCAR system after DMSP analysis, sample carry-over could
- 408 contribute to higher measured concentrations in the subsequent DMS analysis. In order

409	to minimize this potential artifact, the system was thoroughly rinsed with MilliQ water
410	after every run. It is possible, however, that this approach was not entirely efficient.
411	Another potential cause of the higher OSSCAR DMS measurements may be due to cell
412	breakage during the sparging process in OSSCAR. In this scenario, there is the potential
413	for release of intracellular DMSP and DMSP lyase into solution, which would lead to
414	artificially high measured DMS concentrations. It is not possible for us to quantify the
415	magnitude of such a potential artefact, but we note that its magnitude would likely
416	depend on the taxonomic composition of phytoplankton assemblages. Wolfe et al (2002)
417	showed that sample sparging led to an increase in DMS production by both the
418	haptophyte Emiliana huxleii and the dinoflagellate Alexandrium. (Wolfe et al, 2002).
419	Unfortunately, due to limited coverage of discrete sampling, we do not have any
420	estimates of phytoplankton community composition in the region where MIMS and
421	OSSCAR showed the greatest discrepancies. Notwithstanding these potential caveats, we
422	suggest that the two methods show strong promise to provide complementary information
423	on DMS/P (and DMSO) concentrations in surface ocean waters.
424	One challenge going forward is to increase the reproducibility of OSSCAR
425	measurements, and this is an area of active work in our group. Moreover, we have
426	recently worked to significantly improve the limit of detection. The version of our
427	system used in 2015 had a detection limit of roughly 1.4 nM, and was thus far less
428	sensitive than many conventional GC methods, which can achieve sub-nM detection
429	limits. Our detection limit was of only minor consequence for DMSP measurements,
430	given that 72% of measured DMSP concentrations were higher than 10 nM, and less than

431	3% fell below 1.4 nM. The relatively low sensitivity was somewhat more problematic
432	for DMS, with approximately 22% of our OSSCAR-measured DMS values below 1.4
433	nM. Nonetheless, as discussed below, we believe that the OSSCAR data, in combination
434	with our MIMS data, provide useful information on the spatial distribution of both DMSP
435	and DMS in Arctic waters.
436	4.2 Towards a regional Arctic data base of DMS/P concentrations
437	Figure 6 shows a comparison between our Arctic DMS measurements (made by
438	OSSCAR) and other summertime Arctic DMS data in the PMEL database. For this
439	comparison, only PMEL measurements made above the Arctic circle (66.56° N) in June-
440	August were included, resulting in a total of 415 data points. As shown in Fig. 6, the
441	majority of available summertime PMEL DMS/P measurements are found in the Atlantic
442	region of the Arctic, and in the Bering Sea, with limited data in the Canadian Archipelago
443	(for an overview of Arctic DMS/P studies performed to date, see Levasseur, 2013). For
444	the sake of visual clarity, the presentation of data in Fig. 6a, is based on DMS
445	measurements made by OSSCAR, whereas both sets of data were included in the
446	frequency distribution analysis (Fig. 6b). The results presented in Fig. 6 suggest that our
447	measurements are representative of the broader Arctic context, with generally similar data
448	frequency distributions (Fig. 6b) for all three DMS datasets (MIMS, OSSCAR, and
449	PMEL). From the map, we see that the spatial footprint of our measurements complement
450	the existing summer data, helping to expand the spatial coverage of DMS observations in
451	the Arctic Ocean. While the PMEL data base does not include information needed to
452	directly calculate sea-air fluxes, the range of sea-air fluxes we calculated (~ $1 - 80 \mu mol$

- 453 m⁻² d⁻¹) was consistent with recent summertime sea-air DMS fluxes modeled in Resolute
- 454 Bay (Hakase Hayashida, pers. comm.).

455	In addition to complementing the existing PMEL DMS database, our new
456	observations also build on a number of other reduced sulfur measurements in the
457	Canadian Sector of the Arctic Ocean. Observations of DMS and DMSP derived from
458	several past Arctic and subarctic Atlantic surveys are summarized in Table 5. This table
459	focuses heavily on DMS and DMSP measurements made in the Canadian sector and
460	Greenland waters, serving to provide context for our measurements performed in similar
461	environments. The data presented in Table 5 are drawn from different times of year, and
462	from phytoplankton assemblages of varying taxonomic composition, allowing us to
463	examine sulfur accumulation in surface waters under a range of environmental and
464	ecological conditions. For example, Bouillon et al. (2002) observed low DMS
465	concentrations (<1nM) during a large spring diatom bloom (~ 15 μ g L ⁻¹ chl <i>a</i>) in the North
466	Water region. In contrast, higher DMS concentrations have been reported later in the
467	season when total phytoplankton biomass is lower, and taxonomic composition has
468	shifted away from diatom-dominance. Working in the same geographic region as
469	Bouillon, Motard-Côté et al. (2012) reported higher late summer (September) DMS
470	levels (maximum = 4.8 nM), which were accompanied by moderate chl <i>a</i> concentrations
471	(0.2-1 $\mu g L^{\text{-1}}$), while Luce et al. (2011) reported very low DMS (<1nM) associated with
472	moderate chl <i>a</i> concentrations (0.2-2 μ gL ⁻¹) in a flagellate dominated community in late
473	fall (October-November), with DMS decreasing towards the later months. A similar
474	pattern was observed in the Northwest Subarctic Atlantic by Lizotte et al (2012), who

475	associated elevated reduced sulphur (DMSP) production with flagellate and
476	prymnesiophyte communities in midsummer and fall, in contrast to early-season diatom
477	blooms with little associated DMSP and DMS. This seasonal decrease in DMS levels
478	may be potentially attributable to light limited primary productivity, and diminishing
479	capacity for light-induced oxidative stress, which has been shown to increase DMS/P
480	production (Sunda et al., 2002).
481	To date, the highest recorded Arctic water column measurements of DMS (25nM)
482	and DMSP (160 nM) have been observed during mid-summer blooms of the haptophyte
483	Phaeocystis at the ice edge (see Matrai and Vernet, 1997; Gali and Simo, 2010). Our mid-
484	season (July-August) study of similar areas shows moderately high DMS (up to 18 nM)
485	accompanied by relatively low chl <i>a</i> (0.11- 1.06 μ gL ⁻¹) in a mixed community where
486	flagellates and prasinophytes are present (see discussion of HPLC pigments).
487	Together, the available data (Table 5 and our measurements) are consistent with a
488	seasonal cycle in Arctic and subarctic reduced sulfur distributions. Early season diatom-
489	dominated blooms exhibit high biomass and primary productivity but low DMS/P
490	accumulation, while mid-summer phytoplankton assemblages dominated by haptophytes
491	and dinoflagellates display lower phytoplankton biomass but higher reduced sulfur
492	accumulation. This pattern is similar to the summertime 'DMS paradox' in lower latitude
493	temperate and sub-tropical marine waters (Simo and Pedrós-Alió, 1999). In the fall, both
494	Arctic primary productivity and DMS/P production decrease with the onset of lower
495	temperatures and increased ice cover. Our data are consistent with this general scenario,

- 496 representing a mixed-species assemblage with moderate biomass and DMS/P
- 497 accumulation.

498 **4.3 Gradients in DMS and hydrographic frontal structures**

499 The high resolution afforded by the MIMS dataset allows for the observation of 500 fine-scale variability in DMS concentrations at the sub-kilometer scale. Previous studies 501 (Tortell, 2005; Tortell et al., 2011) have previously quantified fine-scale variability in 502 DMS concentrations, demonstrating de-correlation length scales on the order of 10s of 503 Km, and often shorter than that of other oceanographic variables such as temperature and 504 salinity. Figures 2 and 4 clearly demonstrate that gradients in DMS and chl a 505 fluorescence often co-occur with strong gradients in temperature and salinity. This 506 suggests a potential role for hydrographic fronts in driving changes in DMS 507 concentrations. Several potential mechanisms may explain this phenomenon. For 508 example, the frontal mixing of distinct water masses, driven by currents, wind, or melting 509 ice, may introduce nutrients into a low-nutrient water column, stimulating primary productivity and potentially increasing DMS/P production. This stimulation of primary 510 511 productivity has been observed previously by other groups. For example, Tremblay et al. 512 (2011) showed that introduction of nutrient-rich water masses through ice ablation and 513 upwelling led to large (2-6 fold) increases in phytoplankton primary productivity 514 (Tremblay et al., 2011). Mixing of water masses may also potentially expose water 515 column phytoplankton to light shock or osmotic stress by mixing them upwards in the 516 water column or introducing an abrupt salinity gradient. Both of these factors could 517 contribute to elevated DMSP production, given its hypothesized role as an intracellular

518	osmolyte and anti-oxidant (Stefels et al., 2007). Though our data do not allow
519	mechanistic interpretation for the underlying causes of DMS variability in surface waters,
520	the high resolution afforded by MIMS measurements enables real-time observations of
521	DMS gradients, which may be useful in the design of future process studies examining
522	the driving forces for elevated DMS accumulation.
523	Fully resolving the production and consumption dynamics of DMS/P in seawater
524	requires a series of time-consuming and laborious methods, including various isotope
525	tracer studies and quantification of multiple physical process rates (e.g. photo-oxidation).
526	Clearly, it is not possible to conduct such measurements with the high frequency of our
527	MIMS-based DMS measurements. However, use of real-time MIMS monitoring will
528	enable the selection of targeted sampling locations to best leverage sampling efforts. In
529	this respect, the recent work of Asher et al. (2016) provides some example of how high
530	resolution DMS/P measurements can be coupled with isotope tracer studies to derive
531	insight into DMS/P dynamics in high latitude marine waters.
532	4.4 Phytoplankton assemblage composition and mixed layer depth
533	The majority of the sampled stations were characterized by very shallow mixed
534	layer depths (MLD; Table 2) resulting from strong salinity-based stratification of surface
535	waters. Light stress associated with shallow MLD may contribute to elevated DMSP : chl
536	a ratios. In our dataset, the shallowest MLDs were observed at stations BB3 and CAA6
537	(8.2 m and 6.1 m, respectively), and these stations were also characterized by elevated
538	DMSP concentrations. The elevated DMSP : chl <i>a</i> ratios measured in our study also
539	reflect the presence of high-DMSP producing taxa, a phenomenon also reported by other

540	groups (Matrai et al. 1997; Gali et al., 2010; Lizotte et al., 2012). Limited HPLC station
541	data suggest that a mixed phytoplankton assemblage was present in the study area at the
542	time of sampling. When comparing our DMSP: chl a ratios to other measurements, it is
543	important to note that we measured DMSP _t , while many other groups present results in
544	terms of $DMSP_p$, without taking into account the dissolved fraction ($DMSP_d$). As the
545	dissolved DMSP pool typically makes up a small (though highly variable) portion of the
546	total water column DMSP pool, the use of DMSPt does not likely have a large effect on
547	derived DMSP:chl a ratios (Kiene et al., 2000; 2006). Moreover, we used HPLC-derived
548	chl a for these calculations, as opposed to the more standard fluorometric chl a
549	measurements. HPLC chl a measurements are likely to be more accurate than
550	fluorometric measurements, and tend to yield lower concentrations, acting to increase
551	DMSPt:chl a (Welschmeyer 1994).
551 552	DMSPt:chl a (Welschmeyer 1994) . Despite the potential caveats raised above, the DMSP _t :chl <i>a</i> ratios we measured
552	Despite the potential caveats raised above, the DMSP _t :chl <i>a</i> ratios we measured
552 553	Despite the potential caveats raised above, the DMSP _t :chl <i>a</i> ratios we measured across our sampling stations (52-182 nM μ g ⁻¹) were broadly similar to DMSP _p :chl <i>a</i>
552 553 554	Despite the potential caveats raised above, the DMSP _t :chl <i>a</i> ratios we measured across our sampling stations (52-182 nM μ g ⁻¹) were broadly similar to DMSP _p :chl <i>a</i> values found by Motard-Côté et al. (15-229 nM μ g ⁻¹) in the same region in September
552 553 554 555	Despite the potential caveats raised above, the DMSP _t :chl <i>a</i> ratios we measured across our sampling stations (52-182 nM μ g ⁻¹) were broadly similar to DMSP _p :chl <i>a</i> values found by Motard-Côté et al. (15-229 nM μ g ⁻¹) in the same region in September (Motard-Côté et al., 2011). In contrast, our measured DMSP _t :chl <i>a</i> ratios are significantly
552 553 554 555 556	Despite the potential caveats raised above, the DMSP _t :chl <i>a</i> ratios we measured across our sampling stations (52-182 nM μ g ⁻¹) were broadly similar to DMSP _p :chl <i>a</i> values found by Motard-Côté et al. (15-229 nM μ g ⁻¹) in the same region in September (Motard-Côté et al., 2011). In contrast, our measured DMSP _t :chl <i>a</i> ratios are significantly higher than those measured by Luce et al. (maximum of 39 nM μ g ⁻¹) (Luce et al., 2007)
552 553 554 555 556 557	Despite the potential caveats raised above, the DMSP _t :chl <i>a</i> ratios we measured across our sampling stations (52-182 nM μ g ⁻¹) were broadly similar to DMSP _p :chl <i>a</i> values found by Motard-Côté et al. (15-229 nM μ g ⁻¹) in the same region in September (Motard-Côté et al., 2011). In contrast, our measured DMSP _t :chl <i>a</i> ratios are significantly higher than those measured by Luce et al. (maximum of 39 nM μ g ⁻¹) (Luce et al., 2007) and Matrai and Vernet (maximum 17 nmol μ g ^A (-1)) at diatom-dominated stations in the
552 553 554 555 556 557 558	Despite the potential caveats raised above, the DMSP _t :chl <i>a</i> ratios we measured across our sampling stations (52-182 nM μ g ⁻¹) were broadly similar to DMSP _p :chl <i>a</i> values found by Motard-Côté et al. (15-229 nM μ g ⁻¹) in the same region in September (Motard-Côté et al., 2011). In contrast, our measured DMSP _t :chl <i>a</i> ratios are significantly higher than those measured by Luce et al. (maximum of 39 nM μ g ⁻¹) (Luce et al., 2007) and Matrai and Vernet (maximum 17 nmol μ g ^A (-1)) at diatom-dominated stations in the Barents Sea (Matrai and Vernet., 1997). This difference likely reflects a difference in

562 assemblages was not sufficiently variable to enable large differences in DMSP:chla

563 values.

564

4.5The interaction of DMS/P and sea ice

565 The presence of sea ice exerts a strong control on polar phytoplankton by limiting 566 irradiance for primary productivity in the water column. This allows high concentrations 567 of nutrients to accumulate, creating favorable conditions for phytoplankton blooms upon 568 sea-ice melt. Ice edge blooms are well documented, and can serve as a source for reduced sulfur compounds. In a 2010 study, Gali et al found that sea ice melt drove 569 570 stratification of nutrient rich surface water, triggering a sharp increase in primary 571 productivity, with associated elevated DMS and DMSP levels (Gali et al., 2010). A 572 number of recent studies have also examined the potential of sea ice to act as a reservoir of reduced sulfur. For example, Levasseur et al (1994) reported very high concentrations 573 574 of DMS and DMSP in Arctic bottom-ice diatoms, and suggested that the breakup of sea 575 ice may stimulate reduced sulfur production by triggering phytoplankton blooms and releasing accumulated sulfur into the water column. In a more recent study, Galindo et al 576 577 (2016) demonstrated experimentally that the exposure of phytoplankton to high light 578 conditions (mimicking those that would follow the breakup of sea ice) led to near-total 579 release of intracellular DMSP, providing one possible explanation for elevated DMSP 580 levels in the water column. 581 The weak negative correlations between sea ice cover and DMS/P concentration

reducing primary productivity and DMS/P production. In general, the drivers of DMSP

we observed is consistent with the idea that sea ice cover limits insolation, thereby

27

584	and DMS production differ - though DMSP production has been shown to be directly
585	influenced by sea ice melt in under-ice blooms [30a], the production of DMS from DMSP
586	is largely dependent on the metabolism of in situ bacterial assemblages (Zubkov et al,
587	2001), and may therefore be uncoupled from the influence of ice on phytoplankton
588	activity. It is interesting to note, however, that several sharp increases in DMS occurred
589	simultaneously with the occurrence of small amounts of sea ice (<20% total cover) (Fig.
590	2, kms 3400 and 7200 on the cruise track). Limited station data also indicate high
591	DMS/P:chl a ratios in areas with a comparatively high sea ice cover, at stations BB3 and
592	CAA6 (Table 2). At the time of our sampling, both of these stations were characterized
593	by very low phytoplankton biomass (0.11 μ gL ⁻¹ and 0.20 μ g L ⁻¹ chl <i>a</i> , respectively) and
594	had particularly high DMSP: chl <i>a</i> ratios (129 nmol μg^{-1} and 182 nmol μg^{-1} ,
595	respectively). This suggests a potential role for ice-edge effects, either through the melt-
596	induced stimulation of reduced sulfur production in DMS/P rich phytoplankton taxa, or
597	through the release of ice-associated DMS/P into the water column. Figures 2d and 2e
598	show decreased salinity in partially ice-covered areas, in particular around kms 4400,
599	7300, and 9200. Similar trends have been reported by several groups. For instance,
600	Matrai and Vernet (1997) reported significantly higher values of DMS and DMSP in
601	partially ice-covered waters of the Barents Sea relative to ice-free regions, while Gali et
602	al. (Gali et al., 2010) and Leck and Persson (1997) reported highest DMS/P values along
603	the ice edge in their Arctic surveys.
604	4.6 DMS in a changing Arctic

605	The Arctic marine ecosystem is currently undergoing a dramatic warming that is
606	expected to have far-reaching impact on phytoplankton dynamics and, likely, DMS
607	production and sea-air fluxes. Much of the ecosystem change is driven by warming and
608	rapidly melting sea ice, which influences mixed layer stratification, light regimes and
609	nutrient supply. Current work suggests that sea ice loss will eventually lead to a nutrient-
610	poor, shallow-stratified Arctic Ocean with low phytoplankton biomass (Levasseur, 2013).
611	Nutrient limitation may favor smaller cells, shifting diatom-dominated assemblages to
612	communities with a strong flagellate presence, and this may, in turn, increase DMSP
613	production and DMS emissions. A modeling study by Gabric et al (2005) projected
614	significant increases in DMS emissions in response to MLD shoaling and ice ablation.
615	Our observations from regions with shallow mixed layer depths and mixed phytoplankton
616	assemblages do indeed exhibit elevated DMSP:chl ratios, providing some support for
617	this prediction. On-going monitoring work will be needed to examine climate-driven
618	shifts in surface water productivity and biogeochemical cycles in Arctic Ocean waters.
619	5. Conclusion
620	We present a high spatial resolution dataset of reduced sulfur measurements
621	through the Canadian sector of the Arctic Ocean and Subarctic Atlantic. We demonstrate
622	the utility of high-resolution DMS measurements for comparison with other
623	oceanographic variables, and show the coherence of DMS gradients with fine-scale
624	surface hydrographic structure, suggesting elevated DMS production in some
625	oceanographic frontal zones. We also observed elevated DMS/P values in partially ice-
626	covered regions, suggesting that ice-edge effects may stimulate DMS/P production. Our

- 627 data serve to significantly expand the existing spatial coverage of reduced sulfur
- 628 measurements in the Arctic, providing a baseline for future studies in this rapidly
- 629 changing marine environment. Future warming of surface waters and sea-ice melt could
- 630 lead to increased concentrations and sea-air fluxes of DMS, though significantly more
- 631 observations will be needed to substantiate this.
- 632 Acknowledgements: This work was supported by grants from the Natural Sciences and
- 633 Engineering Research Council of Canada (NSERC) through the Climate Change and
- 634 Atmospheric Research program (Arctic-GEOTRACES). We are grateful to the captain
- 635 and crew of the CCGS Amundsen for their invaluable support in this work.
- 636
- 637 Data Availability:
- All data are available at the following github repository:
- 639 <u>https://github.com/tjarnikova/Jarnikova Canadian Arctic DMS supldata (DOI:</u>
- 640 <u>10.5281/zenodo.160225</u>)

641	References
642	Arrigo, K.R., van Dijken, G., and Pabi, S.: Impact of a shrinking Arctic ice cover on
643	marine primary production, Geophys. Res. Lett., 35, L19603,
644	doi:10.1029/2008GL035028, 2008.
645	
646	Arrigo, K.R., Perovich, D.K., Pickart, R.S., and Brown, Z.W.: Massive phytoplankton
647	blooms under Arctic sea ice, Science, 336,1408, doi:10.1126/science.1215065,
648	2012.
649	
650	Asher, E., Dacey, J., Jarníková, T., and Tortell, P.: Measurement of DMS, DMSO, and
651	DMSP in natural waters by automated sequential chemical analysis, Limnol.
652	Oceanogr-Meth., 13, 451-462, doi:10.1002/lom3.10039, 2015.
653	
654	Asher, E., Dacey, J., Stukel, M., Long, M.C., and Tortell, P.: Processes driving seasonal
655	variability in DMS, DMSP, and DMSO concentrations and turnover in coastal
656	Antarctic waters, Limnol. Oceanogr., 62, 104-124, doi: 10.1002/lno.10379, 2016.
657	
658	Bouillon, R.C., Lee, P.A., de Mora, S.J., and Levasseur., M.: Vernal distribution of
659	dimethylsulphide, dimethylsulphoniopropionate, and dimethylsulphoxide in the
660	North Water in 1998, Deep-Sea Res., 49, 5171-5189, doi:10.1016/S0967-
661	0645(02)00184-4, 2002.
662	
663	Boyd, P.W., Crossley, A.C., DiTullio, G.R., Griffiths, F.B., Hutchins, D.A., Queguiner,
664	B., Sedwick, P.N. and Trull, T.W.: Control of phytoplankton growth by iron supply
665	and irradiance in the subantarctic Southern Ocean: Experimental results from the

666	SAZ Project, J. Geophys. Res., 106, 31573-31583, doi:10.1029/2000JC000348,
667	2001.
668	
669	Carmack, E., and McLaughlin, F.: Towards a recognition of physical and geochemical
670	change in Subarctic and Arctic Seas, Prog. Oceanogr., 90, 90-104, doi:
671	10.1016/j.pocean.2011.02.007, 2011.
672	
673	Carr, ME., Friedrichs, M.A.M, Schmeltz, M., Aita, M.N., Antoine, D., Arrigo, K.R.,
674	Asanuma, I., Aumont, O., Barber, R., Behrenfeld, M. Bidigare, R., Buitenhuis,
675	E.T., Campbell, J., Ciotti, A., Dierssen, H., Dowell, M., Dunne, J., Esaias, W.,
676	Gentili, B., Gregg, W., Groom, S., Hoepffner, N., Ishizaka, J., Kameda, T., Le
677	Quéré, C., Lohrenz, S., Mara, J., Mélin, F., Moore, K., Morel, A., Reddy, T., Ryan,
678	J., Scardi, M., Smyth, T., Turpie, K., Tilstone, G., Waters, K., and Yamanaka, Y.: A
679	comparison of global estimates of marine primary production from ocean color,
680	Deep-Sea Res. Pt. II., 53, 741–770, doi:10.1016/j.dsr2.2006.01.028, 2006.
681	
682	Cavelieri, D.J., Markus, T., Hall, D. K., Gasiewski, A. J., Klein, M., and Ivanoff, A.:
683	Assessment of EOS Aqua AMSR-E Arctic Sea Ice Concentrations Using Landsat-7
684	and Airborne Microwave Imagery, IEEE T. Geosci. Remote., 44, 3057-3069, doi:
685	10.1109/TGRS.2006.878445, 2006.
686	
687	Chang, R., Sjostedt, S., Pierce, J., Papakyriakou, T., Scarratt, M., Michaud, S.,
688	Levasseur, M., Leaitch, R., and Abbatt, J.: Relating atmospheric and oceanic DMS
689	levels to particle nucleation events in the Canadian Arctic, J. Geophys. Res., 116,
690	D00S03, doi:10.1029/2011JD015926, 2011.

691	
692	Charlson, R., Lovelock, J., Andreae, M., and Warren, S.: Oceanic phytoplankton,
693	atmospheric sulphur, cloud albedo and climate, Nature, 326, 655-661,
694	doi:10.1038/326655a0, 1987.
695	
696	Coupel, P., Matsuoka, A., Ruiz-Pino, D., Gosselin, M., Marie, D., Tremblay, JÉ., and
697	Babin, M.: Pigment signatures of phytoplankton communities in the Beaufort Sea,
698	Biogeosciences, 12, 991–1006, doi:10.5194/bg-12-991-2015, 2015.
699	
700	Dacey, J., and Blough, N.V.: Hydroxide decomposition of dimethylsulfoniopropionate to
701	form dimethylsulfide, Geophys. Res. Lett., 14, 1246-1249,
702	doi:10.1029/GL014i012p01246, 1987.
703	
704	DiTullio, G., Grebmeier, J., Arrigo, K., Lizotte, M., Robinson, D., Leventer, A., Barry, J.,
705	VanWoert, M., and Dunbar, R.: Rapid and early export of Phaeocystis antarctica
706	blooms in the Ross Sea, Antarctica, Nature, 404, 595–598, doi:10.1038/35007061,
707	2000.
708	
709	Gabric, A., Simó, R., Cropp, R., Hirst, A., and Dachs, J.: Modeling estimates of the
710	global emission of dimethylsulfide under enhanced greenhouse conditions, Global
711	Biogeochem. Cy., 18, GB2014, doi:10.1029/2003GB002183, 2004.
712	
713	Galí, M, and Simó, R .: Occurrence and cycling of dimethylated sulfur compounds in the
714	Arctic during summer receding of the ice edge, Mar. Chem., 122, 105-117,
715	doi:10.1016/j.marchem.2010.07.003, 2010.
716	

717	Galindo, V., Levasseur, M., Mundy, C.J., Gosselin, M., Tremblay, JÉ., Scarratt, M.,
718	Gratton, Y., Papakiriakou, T., Poulin, M., and Lizotte, M.: Biological and physical
719	processes influencing sea ice, under-ice algae, and dimethylsulfoniopropionate
720	during spring in the Canadian Arctic Archipelago, J. Geophys. Res-Oceans, 119,
721	3746-3766, doi:10.1002/2013jc00949, 2014.
722	
723	Galindo, V., Levasseur, M., Mundy, C.J., Gosselin, M., Scarratt, M., Papakyriakou, T.,
724	Stefels, J., Gale, M., Tremblay, JÉ., and Lizotte, M.: Contrasted sensitivity of
725	DMSP production to high light exposure in two Arctic under-ice blooms, J. Exp.
726	Mar. Biol. Ecol., 475, 38–48, doi:10.1016/j.jembe.2015.11.009, 2016.
727	
728	Keller, M.D.: Dimethyl sulfide production and marine phytoplankton: the importance of
729	species composition and cell size, Biological Oceanography, 6, 375-382,
730	doi:10.1080/01965581.1988.10749540, 1989.
731	
732	Kiene, R., Linn, L. J., and Bruton, J.A.: New and important roles for DMSP in marine
733	microbial communities, J. Sea Res., 43, 209-224, doi: 10.1016/S1385-
734	1101(00)00023-X, 2000.
735	
736	Kiene, R.P., and Linn, L.J.: Distribution and turnover of dissolved DMSP and its
737	relationship with bacterial production and dimethylsulfide in the Gulf of Mexico,
738	Limnol. Oceanogr., 45, 849-861, doi:10.4319/lo.2000.45.4.0849, 2000.
739	
740	Kiene, R., and Slezak, D.: Low dissolved DMSP concentrations in seawater revealed by
741	small-volume gravity filtration and dialysis sampling, Limnol. OceanogrMeth., 4,
742	80–95, doi:10.4319/lom.2006.4.80, 2006.

743	
744	Lana, A., Bell, T.G., Simó, R., Vallina, S.M., Ballabrera-Poy, J., Kettle, A.J., Dachs, J.,
745	Bopp, L., Saltzman, E.S., Stefels, J., Johnson, J.E., and Liss, P.S.: An updated
746	climatology of surface dimethlysulfide concentrations and emission fluxes in the
747	global ocean, Global Biogeochem. Cy., 25, GB1004, doi:10.1029/2010GB003850,
748	2011.
749	
750	Leck, C., and Persson, C.: The central Arctic Ocean as a source of dimethyl sulfide
751	Seasonal variability in relation to biological activity, Tellus B, 48B(2), 156–177,
752	doi:10.1034/j.1600-0889.1996.t01-1-00003.x, 1996.
753	
754	Levasseur, M., Gosselin, M., and Michaud, S.: A new source of dimethylsulfide (DMS)
755	for the arctic atmosphere: ice diatoms, Mar. Biol., 121, 381–387,
756	doi:10.1007/BF00346748, 1994.
757	
758	Levasseur, M., Impact of Arctic meltdown on the microbial cycling of sulphur, Nat.
759	Geosci., 6, 691–700, doi:10.1038/ngeo1910, 2013.
760	
761	Lizotte, M., Levasseur, M., Michaud, S., Scarratt, M., Merzouk, A., Gosselin, M.,
762	Pommier, J., Rivkin, R., and Kiene, R.: Macroscale patterns of the biological
763	cycling of dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) in the
764	Northwest Atlantic, Biogeochemistry, 110, 183-200, doi:10.1007/s10533-011-
765	9698-4, 2012.
766	

767	Loose, B., McGillis, W.R., and Schlosser, P.: Effects of freezing, growth, and ice cover on
768	gas transport processes in laboratory seawater experiments, Geophys. Res. Lett.,
769	36, L05603, doi:10.1029/2008GL036318, 2009.
770	
771	Luce, M., Levasseur, M., Scarrat, M.G., Michaud, S., Royer, SJ., Kiene, R., Lovejoy,
772	C., Gosselin, M., Poulin, M., Gratton, Y., and Lizotte, M.: Distribution and microbial
773	metabolism of dimethylsulfoniopropionate and dimethylsulfide during the 2007
774	Arctic ice minimum, J. Geophys. ResOceans, 116, C00G06,
775	doi:10.1029/2010JC006914, 2011.
776	
777	Malin, G., Wilson, W.H., Bratbak, G., Liss, P.S., and Mann, N.H.: Elevated production of
778	dimethylsulfide resulting from viral infection of cultures of Phaeocystis pouchetii,
779	Limnol. Oceanogr., 43, 1389–1393, doi: 10.1016/S0967-0645(02)00184-4, 1998.
780	
781	Martin, J., Tremblay, J. Gagnon, J., Tremblay, G., Lapoussière, A., Jose, C., Poulin, M.,
782	Gosselin, M., Gratton, Y., and Michel, C.: Prevalence, structure and properties of
783	subsurface chlorophyll maxima in Canadian Arctic waters, Mar. Ecol. Prog. Ser.,
784	412, 69-84, doi:10.3354/meps08666, 2010.
785	
786	Matrai, P., and Vernet, M.: Dynamics of the vernal bloom in the marginal ice zone of the
787	Barents Sea: Dimethyl sulfide and dimethylsulfoniopropionate budgets, J. Geophys.
788	ResOceans, 102, 22965-22929, doi:10.1029/96JC03870, 1997.
789	
790	Michel, C., Ingram, R. G., and Harris, L. R.: Variability in oceanographic and ecological
791	processes in the Canadian Arctic Archipelago, Prog. Oceanogr., 71, 379-401,
792	doi:10.1016/j.pocean.2006.09.006, 2006.

793	
794	Motard-Côté, J., Levasseur, M., Scarratt, M.G., Michaud, S., Gratton, Y., Rivkin, R.B.,
795	Keats, K., Gosselin, M., Tremblay, JÉ., and Kiene, R.P.: Distribution and
796	metabolism of dimethylsulfoniopropionate (DMSP) and phylogenetic affiliation of
797	DMSP-assimilating bacteria in northern Baffin Bay/Lancaster Sound, J. Geophys.
798	Res-Oceans, 117, C00G11, doi:10.1029/2011JC007330, 2012.
799	
800	Mungall, E., Croft, B., Lizotte, M., Thomas, J., Murphy, J., Levasseur, M., Martin, R.,
801	Wentzell, J., Liggio, J., and Abbatt, J.: Dimethyl sulfide in the summertime Arctic
802	atmosphere: measurements and source sensitivity simulations, Atmospheric
803	Chemistry and Physics, 16, 6665–6680, doi:10.5194/acp-16-6665-2016, 2016.
804	
805	Nightingale, P.D., Malin, G., and Law, C.S.: In situ evaluation of air-sea gas exchange
806	parameterizations using novel conservative and volatile tracers, Global
807	Biogeochem. Cy., 14, 373-387, doi:10.1029/1999GB900091, 2000.
808	
809	Pinckney, J., Papa, R., and Zingmark, R.: Comparison of high-performance liquid
810	chromatographic, spectrophotometric, and fluorometric methods for determining
811	chlorophyll a concentrations in estaurine sediments, Journal of Microbiol. Meth.,
812	19, 59–66, doi:10.1016/0167-7012(94)90026-4, 1994.
813	
814	Saltzman, E.S., King, D.B., Holmen, K., and Leck, C.: Experimental determination of the
815	diffusion coefficient of dimethylsulfide in water, J. Geophys. Res., 98, 16481-
816	16486, doi:10.1029/93JC01858, 1993.
817	

818	Scarratt, M., Levasseur, M., Michaud, S., and Roy, S.: DMSP and DMS in the Northwest
819	Atlantic: Late-summer distributions, production rates and sea-air fluxes, Aquat.
820	Sci., 69, 292–304, doi:10.1007/s00027-007-0886-1, 2007.
821	
822	Simó, R., and Pedrós-Alió, C.: Role of vertical mixing in controlling the oceanic
823	production of dimethyl sulphide, Nature, 402, 396–399, doi:10.1038/46516, 1999.
824	
825	Simó, R.: Production of atmospheric sulfur by oceanic plankton: Biogeochemical,
826	ecological and evolutionary links, Trends Ecol. Evol., 16, 287-294,
827	doi:10.1016/S0169-5347(01)02152-8, 2001.
828	
829	Smith, W., Marra, J., Hiscock, M., and Barber, R.: The seasonal cycle of phytoplankton
830	biomass and primary productivity in the Ross Sea, Antarctica, Deep-Sea Res. Pt.
831	II., 47, 3119–3140, doi:10.1016/S0967-0645(00)00061-8, 2000.
832	
833	Stefels, J., Steinke, M., Turner, S., Malin, G., and Belviso, S.: Environmental constraints
834	on the production and removal of the climatically active gas dimethylsulphide
835	(DMS) and implications for ecosystem modelling, Biogeochemistry, 83, 245-275,
836	doi:10.1007/s10533-007-9091-5, 2007.
837	
838	Sunda, W., Kieber, D.J., Kiene, R.P., and Huntsman, S.: An antioxidant function for
839	DMSP and DMS in marine algae, Nature, 418, 317–20, doi:10.1038/nature00851,
840	2002.
841	

842	Taylor, R. L., Semeniuk, D. M., Payne, C. D., Zhou, J., Tremblay, J., Cullen, J. T., and
843	Maldonado, M. T.: Colimitation by light, nitrate, and iron in the Beaufort Sea in
844	late summer, J. Geophys. ResOceans, 118, 3260-3277, doi:10.1002/jgrc.20244.,
845	2013.
846	
847	Tortell, P.D., Dissolved gas measurements in oceanic waters made by membrane inlet
848	mass spectrometry, Limnol. OceanogrMeth., 3, 24-37, doi:
849	10.4319/lom.2005.3.24, 2005.
850	
851	Tortell, P. D., Guéguen, C., Long, M. C., Payne, C. D., Lee, P., and DiTullio, G. R.:
852	Spatial variability and temporal dynamics of surface water pCO2, Δ O2/Ar and
853	dimethylsulfide in the Ross Sea, Antarctica, Deep-Sea Res. Pt. I., 58, 241–259,
854	doi:10.1016/j.dsr.2010.12.006, 2011.
855	
856	Tremblay, J.E., Michel, C., Hobson, K.A., Gosselin, M., and Price, N.: Bloom dynamics
857	in early opening waters of the Arctic Ocean, Limnol. Oceanogr. 51, pp.900-912.
858	doi: 10.4319/lo.2006.51.2.0900, 2006.
859	
860	Tremblay, J., Bélanger, S., and Barber, D.G.: Climate forcing multiplies biological
861	productivity in the coastal Arctic Ocean, Geophys. Res. Lett., 38,
862	doi:10.1029/2011GL048825, 2011.
863	
864	Welschmeyer, N.A., Fluorometric analysis of chlorophyll a in the presence of chlorophyll
865	b and pheopigments, Limnol. Oceanogr., 39, 1985-1992,
866	doi:10.4319/lo.1994.39.8.1985, 1994.
867	

868	Wolfe, G.V., Strom, S.L., Holmes, J.L., Radzio, T. and Olson, M.B.:
869	Dimethylsulfoniopropionate cleavage by marine phytoplankton in response to
870	mechanical, chemical, or dark stress. Journal of Phycology, 38, 948-960.
871	doi:10.1046/j.1529-8817.2002.t01-1-01100.x, 2002.
872	
873	Woodhouse, M.T, Carslaw, K.S., Mann, G.W., Vallina, S.M., Vogt, M., Halloran, P.R.,
874	and Boucher, O.: Low sensitivity of cloud condensation nuclei to changes in the
875	sea-air flux of dimethyl-sulphide, Atmospheric Chemistry and Physics, 10, 7545-
876	7559, doi:10.5194/acp-10-7545-2010, 2010.
877	
878	Zubkov, M.V, Fuchs, B., Archer, S., Kiene, R., Amann, R., and Burkill, P.: Linking the
879	composition of bacterioplankton to rapid turnover of dissolved
880	dimethylsulphoniopropionate in an algal bloom in the North Sea, Environ.
881	Microbiol., 3, 304–311, doi:10.1046/j.1462-2920.2001.00196.x, 2001.
882	

883 **Tables:**

Pigment	Associated Taxa
Chlorophyll c ₃	Haptophytes
Peridinin	Dinoflagellates
19'-butanoyloxyfucoxanthin	Haptophyte
Fucoxanthin	Diatoms, Haptophytes
19'-hexanoyloxyfucoxanthin	Haptophytes, Dinoflagellates
Diadinoxanthin	Haptophytes, Dinoflagellates,
Violaxanthin	Diatoms Dinoflagellates
	Dinoflagellates
Zeaxanthin Cable 1. HPLC marker pigments a Coupel et al. 2015).	and their associated phytoplankton tax
able 1. HPLC marker pigments a	
able 1. HPLC marker pigments a	
able 1. HPLC marker pigments a	
able 1. HPLC marker pigments a	
able 1. HPLC marker pigments a	
able 1. HPLC marker pigments a	

896	Diadino/ chla 0.056 0.024 0.087 0.087 0.042 0.042 0.058 0.051 0.058
897	
898	19'HexFuc/ chla 0.156 0.051 0.089 0.023 0.023 0.023 0.023 0.023
899	
900	 Fuc/ chia chia chia
901	19'ButFuc/ chla 0.077 0.011 0.015 0.015 0.017 0.017 0.021 0.020
902	
903	 Perid/ chla <
904	DMSP/ DMSP/ chia (nmol nd 129.4 93.3 52.3 52.3 114.7 1
905	DMS/ chla (muol Hg ⁻¹⁾ 9.6 6.6 5.1.7 21.7 21.7 21.7 10.6 110.6
906	chla (ug L ⁻¹) 0.51 0.59 0.12 0.12 0.12 0.16 0.16 0.13 0.13
907	
908	% Ice Cover nd nd 19.7 nd 6.61 16.43 13.3 8.23
909	MLD(m) 18.4 41.4 8.2 10.3 32.1 5.3 6.1 6.1 2.1 8.4
910	Lon(E) -53.37 -56.55 -68.59 -67.00 -80.56 -91.49 -97.47
911	Lat(N) 56.12 60.45 71.41 72.75 74.52 74.12 74.75 73.66 69.16
912	
913	Station K1 LS2 BB3 BB2 CAA1 CAA5 CAA5 CAA5 CAA7

914 Table 2. Mixed layer depth (MLD), ice cover, HPLC pigment measurements (ratios of selected

915 marker pigments to chl a), DMS (MIMS) and DMSP (OSSCAR) measurements. Perid =

917 hexanoyloxyfucoxanthin, Diadino = Diadinoxanthin *nd*= no data. *bdl* = below detection limit.

18	Variable	DMS Correlation	DMSP Correlation	
		Coefficient	Coefficient	
	$\Delta O_2/Ar$	0.22	0.33	
	Salinity	0.35	0.34	
	SST	0.29	0.14	
	Fluorescence	0.32	0.66	
	pCO ₂	0.16	0.12	
	Ice Cover	-0.26	-0.34	
)				
	Table 3 Pearson cor	relation coefficients rel	ating DMS measureme	ents made by MIMS and
	DMSP measuremen	ts made by OSSCAR to	o other oceanographic v	variables. Only
2	correlations signific	ant at the $p < 0.05$ level	are shown. $\Delta O_2/Ar$ rat	tios were obtained using
5	MIMS.			
1				
5				
7				
3				
9				

Station	Diatom	Dinoflag.	Chloro.	Prasino	Crypto.	C-P	c3-Flag.	Hapto-7
K1	37	14	0	17	4	9	1	16
LS2	39	19	0	23	1	3	7	8
BB3	48	15	4	14	8	1	5	5
BB2	44	16	11	14	4	2	1	8
CAA1	47	4	0	39	2	2	4	2
CAA5	50	19	1	10	3	2	14	1
CAA6	52	16	1	8	3	2	17	1
CAA7	46	11	4	17	8	8	0	5
VS	67	8	0	11	3	3	6	3

Table 4 CHEMTAX-derived phytoplankton assemblage estimates (numbers given are

936 percent of total chl a) for sampled stations. Diat. = diatoms; Dinoflag = Dinoflagellates;

937 Chloro. = Chlorophytes; Prasino = Prasinophyte (types 2 and 3); Crypto. = Cryptophytes

938 Chryso-Pelago =Chrysophytes/Pelagophytes; c3-flag. = c3-Flagellates; Hapto-7 =

Haptophyte type 7. Due to the presence of unidentified phytoplankton taxa, not all

- 940 assemblage estimates sum to 100%.

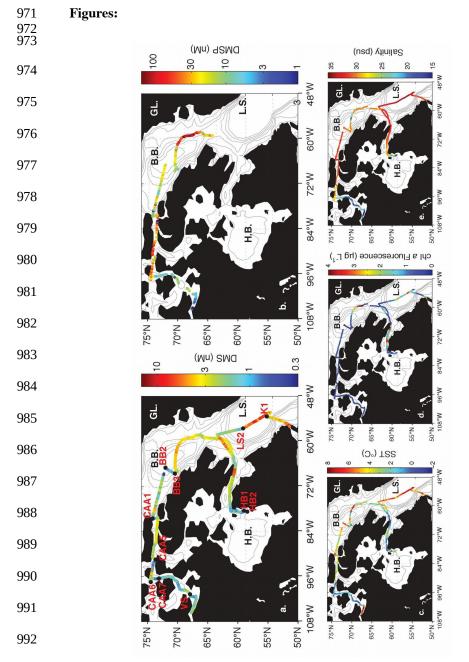

951		e	su	II					for Say	
52	teristics	semblag	nd ed statio	nated in a	stis)				except f Baffin E	iatom-
953	Assemblage characteristics	Diatom dominated assemblage	Diatom-dominated and Phaeocystis-dominated stations	Nanoflagellate dominated in all	seasons Haptophyte (<i>Phaeocystis</i>) dominance	-13		blage	Flagellate-dominated except for diatom-dominated in Bay	Mixed assemblage, diatom- dominated
954	emblage	om domi	om-dom	oflagella	seasons Haptophyte (dominance	Not described		Mixed assemblage	ellate-do m-domi	Mixed assem dominated
955		Diato	Diato Phae	Nano	scasons Haptoph dominar	Not		Mixe	Flag	Mixe
956										
57		33		1	1.4 - 163.6		_	3	•	160
58	DMSP (Mn)	0.9-53	6-27	4-101	1.4 -	I	5-70	0-203	2-39	<1 - 160
59	(Mn)	-6.7	2.8 - 25.3	12	0.1 - 18.3	0.04 - 12	5.2	1.7	-0.8	8
60	DMS (nM)	0.04-6.7	2.8 -	0.1-12	0.1 -	0.04	0.4-5.2	0.2-4.7	0.05-0.8	0.1-18
61		5	53		Sea	Sca	North	Atlantic	3	Arctic
062	Region	North Water	Barents Sea	Northwest	Auanuc Greenland Sea	Greenland Sea	Baffin Bay North Water	Northwest Atlantic	High Arctic	Canadian Arctic Archipelago
63	Reg		B	ž	δ δ	5				
64	Month	April-June	May	May-	July	August- October	September	September	October- November	July-August
65	Year	1998	1993	2003	2007	1991	2008	1999	2007	2015
66	Ye									
67	5	Bouillon et al. (2002)	Matrai et al. (1997)	Lizotte et al.	(2012) Gali et al. (2010)	Leck et al. (1996)	Motard-Côté et al. (2012)	Scarratt et al. (2007)	Luce et al. (2011)	This study
068	Author	Boui (20	Matı (19	Lizo	(2012) Gali et (2010)	Leck et (1996)	Motar et al. (2012)	Scarra (2007)	Luce et (2011)	This

Table 5. Compilation of published Arctic and Subarctic Atlantic DMS/P data from the

970 summer and fall months, focusing on observations from the Western Hemisphere.

Figure 1. Spatial distribution of DMS, DMSP and hydrographic variables. GD. =

994 Greenland, B.B. = Baffin Bay, L.S = Labrador Sea, H.B. = Hudson Bay.

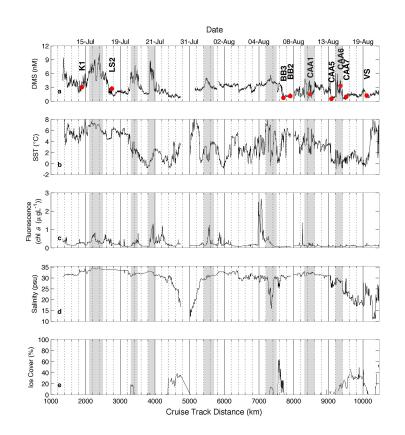


Figure 2. Distribution of DMS and hydrographic variables along our cruise track. Greyshaded areas show denote regions of sharp increases in DMS.

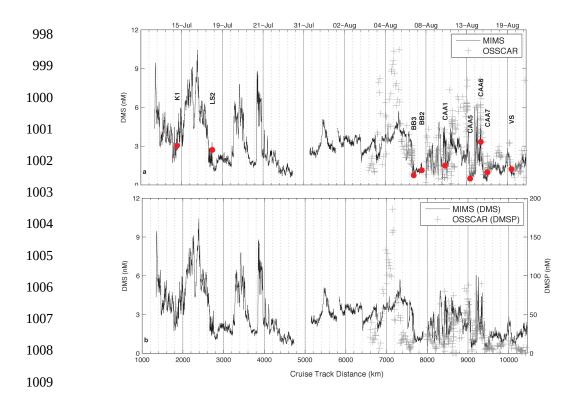
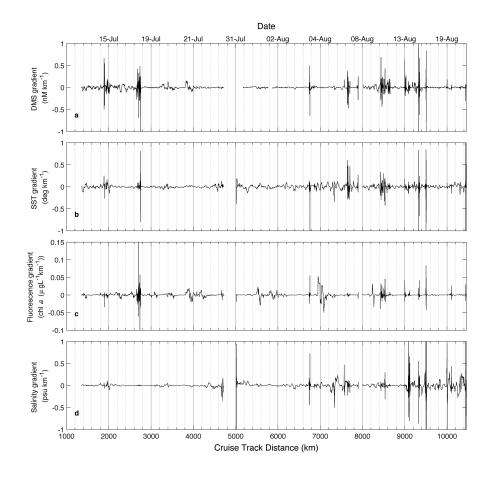
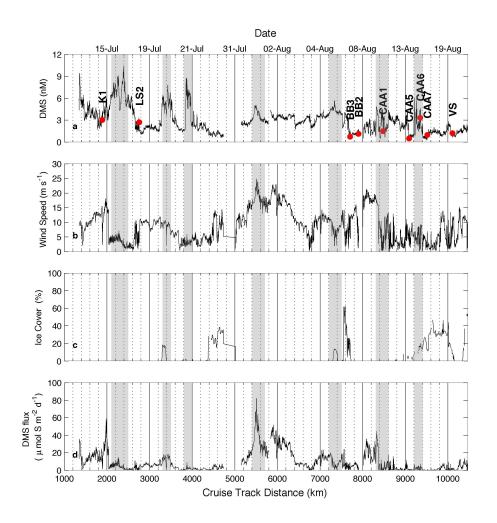
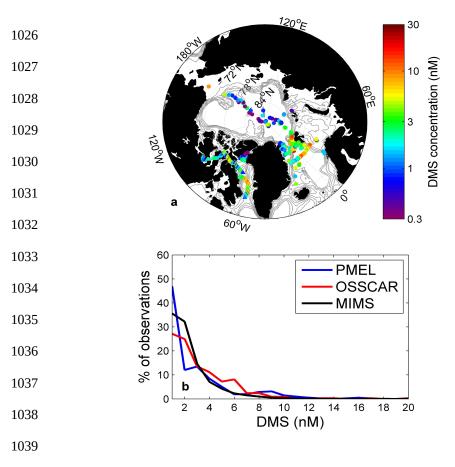



Figure 3. Distribution of DMS and DMSP along the cruise track. Panel (a) shows DMS
measurements made by MIMS and OSSCAR. Note that a small fraction (less than
0.5%) of measurements made by OSSCAR were above 12 nM. Panel (b) shows MIMS
data with OSSCAR DMSP measurements superimposed on a different y scale (right hand
side).



1017 Figure 4. Spatial gradients in DMS and hydrographic variables.



1024 Figure 5. Distribution of DMS, wind speed, sea ice cover and sea-air DMS flux along the

- 1025 cruise track.

1040 Figure 6. Comparison of OSSCAR- and MIMS-measured DMS from this study with

1041 existing data in the PMEL database